
The spread of mythologies in the
name of “history of science,” began

very early.
The Greek historian Herodotus

reported that geometry was invented in
Egypt, and transmitted from there to the
Ionians. He also claimed, however, that
geometry arose in connection with the
practical problem of measuring and
reconstructing the division-boundaries of
agricultural fields after each periodic
flooding of the Nile (geo-metry = earth-
measurement). If Herodotus intended the
term, “geometry,” to signify some special-
ized knowledge relevant to surveying,
there may be an element of truth to the
latter assertion; but, if he meant the geom-
etry of Thales, Anaximander, Pythagoras,
and Plato, then the account is certainly
wrong and highly misleading. This story
of geometry’s alleged practical origin
(whether Herodotus is to blame for it or
not), found its way into the subsequent
histories of science, up to this day. It
reminds us of the theory of the “opposable
thumb” and other absurdities of Friedrich
Engels’ “dialectical materialism.” 

Contrary to this, the overwhelming
evidence—including that contained in
Plato’s Timaeus, in the Vedic and other
ancient calendars, as well as the implied
navigational skills of the “Peoples of the
Sea”—demonstrates that all physical sci-
ence originated in
astronomy. Astro-
nomy, in turn, was
cultivated in some
form already tens,
probably hundreds
of thousands of years
before the classically
recorded Egyptian
civilization, by mar-
itime cultures spread
across the globe.
Geometry begins
with nothing less,
than man’s attempt
to measure the Uni-

verse as a whole.
This should indicate

that the practice of bas-
ing school mathematics
education on so-called
“plane and solid geome-
try”—a practice that has
dominated European
education, despite the
Renaissance, for over two
millennia—is profound-
ly in error. Henceforth,
the teaching of geometry
should begin with the
failure of plane and solid
geometry to account for
the most elementary features of visual
astronomy. That failure has a precise,
knowable structure; to characterize that
singularity, is to carry out the first scien-
tific measurement of the Universe.

Bearing in mind that we are dealing
with matters of fundamental impor-
tance, we need not apologize for the ele-
mentary nature of the following
account. It should help refresh the mind
on familiar matters, while opening some
new flanks at the same time.

Constructing a Star Chart

Imagine you are a prehistoric astro-
nomer, attempting to produce a star
chart on a clay tablet or papyrus sheet.

You require that the
chart should accurately
represent the shapes of
the familiar constella-
tions of stars, and also
the mutual orientations
of the various constella-
tions relative to each
other, so that the chart
can be used for naviga-
tional purposes.

As far as individual
constellations are con-
cerned, you find no diffi-
culty drawing any one of
them separately. You

just naively transfer the image of what
you see, as if unchanged, to the tablet. No
problem? But, as you begin to map larg-
er portions of the sky, adding more and
more constellations to the chart, difficul-
ties arise. The constellations don’t fit
together. You begin again, with another
constellation as starting-point. Once
again, things don’t fit. Why? Although
in each case you can specify the point at
which the mapping process begins to
break down, the underlying cause clear-
ly lies outside the specifics of each
attempt.

This problem embraces paradoxes of
the sort any curious child will have
observed. I stand up and look straight
ahead at some point on the horizon. Now,
I look to the right of that, and more to the
right, and so on, until, by continuing my
action of “looking to the right,” I turn all
the way around and come back to the
original point . . . from the left! Or
instead, if I start by looking straight ahead
as before, and now look up, and keep
turning my head in that “upward” direc-
tion further and further, I end up bend-
ing backward until I am moving my head
downward toward the ground and seeing
everything upside down!
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The First Measurement of the Universe

__________

This Pedagogical Exercise first appeared in
December 1998.

Herodotus (c. 484-430 B.C.)

Thales (625?-?547 B.C.) Plato (c. 428-348 B.C.)
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(Let no one laugh off these simple
paradoxes of linearity, who is not pre-
pared, for example, to explain to any child
or adult, how it can happen that the Earth
can be in two different days, depending
on the position on the Earth’s surface, at
one and the same moment in time.)

These sorts of paradoxes give rise to
unavoidable, interwoven periodicities in
our attempt to construct a star chart—as
for example when I attempt to represent
the observer’s looking “to the right” and
“upward” by motion “across” and “up”
on the chart.

(At a more apparently “advanced”
level, the same problems plague the
Cartesian-like coordinate systems still
used by astronomers to record the posi-
tions of the stars. To describe one such
system in a perfunctory manner: Given
any star, let “y” be its angular “height”
above the horizon—i.e., the magnitude
of angle from the position of the star
“downward” to the point “directly below
it” on the horizon—and “x” the angle
along the horizon from that point to
some chosen fixed point on the horizon.
We might thus represent the position of
any star by a point in the Cartesian plane,
whose rectilinear coordinates are propor-
tional to x and y, respectively. The result-
ing mapping, however, grossly distorts
the shapes and angular relationships of
the constellations, especially those in the
vicinity of the overhead or zenith-point,
where the mapping “explodes.”)

This mere descriptive approach,
however, falls short of identifying the
underlying cause of the prob-
lem. In particular, it does not
answer a crucial question which
ought to pose itself to us: Does
the difficulty arise only when we
want to map large portions of the
sky; or is it already present,
albeit so far unnoticed, in the
attempt to represent any arbi-
trarily small portion of the sky?

Spherical Bounding of 
The Universe

To progress further, we need
to examine the internal charac-
teristics  of that action by
which we, as ancient astro-
nomers and navigators,  are

attempting to measure the Universe.
The ancient astronomer makes a
series of star sightings, measuring, in
effect, the rotation from one direction
in the sky to another. Imagine that a
movable “pointing-rod” of fixed
length is fixed at one end to a univer-
sal joint at our point of observation.
Observe that the tip of that rod moves
on a spherical surface whose center is
the fixed pivot point,  and whose
radius is the rod’s length. Imagine we
were to construct a transparent spher-
ical shell of that dimension around the
center, and mark the shell at each
position where the end of the rod
points to a star. The result would be a
spherical star-chart, whose markings
would coincide exactly with the

observed star positions
when viewed from the
center of the sphere
(and only then).

We have demonstrat-
ed a spherical bounding of
our action to measure
the Universe! The
sphere is not an object in
the sky, but a determi-
nate feature of our act of
measurement: a repre-
sentation of its underly-
ing ordering principle.
Does that make it arbi-
trary or “purely subjec-
tive”? By no means!
This phase of astronomy
is a necessary step in the

self-development of the Universe, and
thus an imbedded characteristic of the
Universe itself.

It now appears, that the ancient
astronomer’s problem of drawing a star
chart on a clay tablet or papyrus, is
equivalent to the problem of mapping
the inner surface of a sphere onto a
plane surface. (Note: “Inner surface 
of a sphere” signifies—paradoxically
enough—a completely different geomet-
rical ordering principle, than the “outer
surface.” “Inner surface” signifies the
ordering of the surface with respect to
the spherical center only.)

There exist innumerable possible
methods to attempt such a projection,
each of which fails in a different way.
The simplest is the method of central

86

FIGURE 1. Mapping the inside surface of a sphere onto
a plane.

FIGURE 2. Distortion in the projection is minimized in the polar region, but increases near the
boundary of the hemisphere.



projection onto a plane outside the
sphere, defined as follows: For any
locus on the inner spherical surface—
corresponding to a pointing-direction
from the center—prolong that direc-
tion outward until it intersects the
plane [SEE Figure 1]. Readers should
thoroughly investigate this species 
of projection with the help of a trans-
parent plastic sphere and a suitable
light source, noting several important
characteristics.

For example: the action of simple
rotation (e.g. of the pointing-rod) gen-
erates a great circle on the inner sur-
face of  the sphere;  the projected
image of a great circle, so constructed,
produces the effect of a straight line on
the plane surface. Encouraged by that
result, examine the effect of the pro-
jection on various arrays of great cir-
cles. At the same time, observe that
the projection maps only a half of the
spherical surface, a hemisphere, onto
the plane.  The boundary of that
hemisphere—a great circle whose
location we can determine by cutting
the sphere by a plane surface parallel
to the projection-plane—defines a sin-
gularity: the mapping “blows up”
when we approach that boundary cir-
cle. In the vicinity of the boundary,
the projection introduces wild distor-
tions relative to the relationships on
the inner spherical surface. The least
distortion apparent occurs farthest
away from the boundary,  in the

“polar region” of the hemi-
sphere [SEE Figure 2].

The “catastrophic” dis-
tortions near the boundary,
and the circumstance, that
only half of the sphere is
mapped (or actually much
less, if we want to avoid the
worst distortions), suggests
to our ancient astronomer
the following tactic: Instead
of trying to map the entire
spherical surface (or night
sky) at once, divide the sur-
face into regular, congruent
regions, and construct the
“truest possible” mapping
for each one [SEE Figure 3].
The combination of such

sectoral charts would hopefully fit
together to replace a single one. Note,
that a complete set of central projec-
tions, of the sort we now envisage, cor-
responds to a regular array of great cir-
cles on the sphere, each constituting the
singular boundary of the corresponding
mapping.

Out of the corner of our
mind’s eye we might already
have anticipated a new
source of failure: The
attempt to “fit” the mappings
together at the edges of the
chosen regions, will result in
discontinuities!

We have entered into the
domain governed by the five
regular solids. We propose to
explore that domain, from a
new standpoint, in future
pedagogical discussions. To
finish this one, consider the
following:

We saw, that in order to
reduce the effect of distortion
in each spherical mapping to
a minimum, the portion of
the spherical surface mapped,
should be made as small as
possible. But, how finely can
the surface of the sphere be
subdivided?

The characteristic of lin-
ear, planar, solid, or Carte-
sian geometry in general—a
characteristics which distin-

guishes such hypothetical, “virtual”
geometries from the real Universe—is
the purported possibility of unlimited,
self-similar subdivision, or “tiling,” of
space. Take a square in the plane, for
example; by connecting the midpoints
of the opposite sides, we can divide the
square into four congruent subsquares,
and so on ad infinitum. An analogous
construction applies to any triangle.
Similarly, a cube in so-called “solid
geometry” can be divided into 8 (or
any cubed number) of congruent cubes
[SEE Figure 4].

What about the inner surface of the
sphere? Take the division of the spheri-
cal surface into six congruent, curvilin-
ear-square regions—i.e., a regular
spherical cube. What happens when we
try to subdivide those regions into small-
er, congruent curvilinear squares? What
happens for the division of the spherical
surface, defined by the regular octahe-
dron, and the other regular solids?
What is the common source of the barrier
to further subdivision?

—Jonathan Tennenbaum

87

FIGURE 3. Constructing a map of the surface
using congruent segments.

FIGURE 4. Tiling a square, a triangle, and a cube.


